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Abstract

In this dissertation we study a derived graph called the triangle graph of a graph.

We start by giving a brief background on derived graphs, followed by some basic

definitions in graph theory which are relevant in this work. We then discuss some

well known classes of graphs and some well known graph operations.

Thereafter, we give a known formal definition of a line graph, followed by a few

examples and some well known results on line graphs. This leads to the introduction

of the main structure of this work, the triangle graph of a graph. We define the

triangle graph of a graph and clarify the concept with examples. Then we establish a

few properties of a triangle graph of a graph, followed by establishing triangle graphs

of certain classes of graphs.

Finally, we conclude the dissertation by discussing vertex-join of a graph and the

relationship between the graph G, and the triangle graph of a vertex-join of G.

— Elias Sithole
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Chapter 1

Introduction

In this chapter, we give a brief background on derived graphs. Thereafter, we give an

overview of the dissertation, followed by some basic definitions in graph theory which

are relevant to this work. Furthermore, we list some well known classes of graphs.

We conclude this chapter by stating some known graph operations.

1.1 Background on derived graphs

The whole universe is based on the concept of graph theory where love

is an edge, that is connecting two vertices or people either directly or

indirectly.

Yatin Mehndiratta

It is no coincidence that there is a vast interest in graph theory. Its wide range of

applicabilites makes it one of the most intriguing concepts in modern day applied

mathematics. The quotation by Yatin Mehndiratta, for instance, shows graph theory

being applied in the field of psychology. Although this background is not about the

general history of graph theory, it is however necessary to mention Leonhard Euler.

Many authors regard Leonhard Euler as the father of graph theory. The Königsberg
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bridge problem which can be traced back as early as the year 1736 was introduced

by Leonhard Euler. Within graph theory, there are various interesting topics worth

studying, one particular topic which is interesting and relevant to our study is derived

graphs. There is a wide range of problems which can be studied on derived graphs,

for instance studying structural properties of the derived graph in comparison to

the original graphs. We now give a brief history of derived graphs. Not only will

this background highlight some important historical events, but it will also lay out a

foundation of the subject matter of this dissertation. It is important to note that a

derived graph is obtained from a certain graph operation. It is from different kinds

of graphs operations that we are able to derive graphs.

We first discuss graph operations of which they were independently discovered by

different authors. We begin with two of the most common graph operations, the

graph union and graph join. Not much is known in terms of the history of these two

operations, however for more information, see [9]. Another graph operation which

is widely known is graph product, but comes in many different forms. There is a

handbook on products of graphs, hence for definitions, examples and most theory

on products, we refer to [8]. There are four fundamental graph products, namely,

cartesian product, direct product, lexicographic product and strong product. All of

which each were introduced by a different author, except for the cartesian product

and direct product.

Introduced in 1912 by A.N. Whitehead and B. Russell, the cartesian product has

been widely studied and regarded as the simplest graph product. The direct product

also referred to as the tensor product or kronecker product, was introduced by A.N.

Whitehead and B. Russell and traces back to the same year as the cartesian product,

1912. It is important to know that different authors use different notations for these

products. Another well known graph product is the lexicographic product, which

dates back to the year 1914. Finally, the strong product was introduced in 1960 by G.

Sabidussi. It was only around the years 1960 - 1961 that authors began studying graph
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products actively. Some very interesting problems in graph theory arise from just

studying these products alone. In 1960, G. Sabidussi came up with a very intriguing

theory. One of the questions which was addressed is, do graphs factor uniquely into

primes over a given product? G. Sabidussi and V.G. Vizing went on to show that a

connected graph which is a cartesian product can be uniquely factored into primes,

which is now called the Sabidussi-Vizing theorem. In 1986, J. Feigenbaum and A.

Schäffer, showed that prime factorization is not easy for the lexicographic product

and went further in 1992 to show that it is possible for graphs to factor uniquely into

primes over the strong product. W. Imrich, used the very same approach in 1998 for

the direct product.

Another graph operation known as line graph is one of the most well known graph

operations. Line graphs were first introduced by H. Whitney [20], traced back to the

year 1932. Although H. Whitney was the first person to introduce line graphs, H.

Whitney never coined this name. We will give more details on the history of line

graphs in Chapter 2.

Another well known graph operation is the intersection of graphs. Just like with graph

products, there are different classes of intersection graphs. A class of intersection

graphs called interval graphs was discovered by S. Benzer, see [4]. He saw it fitting

that a string of genes representing a bacterial chromosome be regarded as a closed

interval on the real line. Interestingly, this led to another discovery of a class of

intersection graphs called string graphs. In 1959, G. Hajós [9], proposed that a

graph can be associated with every finite family F of intervals. C. Lekkeikerker

and J. Boland [12] continued with this work in 1962 and so did P.C. Gilmore and

A.J. Hoffman [7] in 1964. Another class of intersection graphs called circular arc

graphs, appeared in the year 1964 in the paper published by H. Hadwiger [11]. More

publications followed thereafter, most notably by W.E. Klee in 1969 and A. Tucker

who wrote on circular graphs in a Ph.D thesis in 1969.

We now mention chordal graphs which are also classified as intersection graphs, first

3



studied by A. Hajnal and J. Suranyl [1] in 1958. Back then chordal graphs were mostly

referred to as rigid circular graphs or triangulated graphs. In 1960, C. Berge [1] went

on to introduce the notion of perfect graphs which also involves chordal graphs. There

are many other classes of intersection graphs which we will not go through their

backgrounds, for example, circle graphs, trapezoid graphs, disk graphs, tolerance

graphs, permutation graphs, etc.

In this dissertation, we derive our own graph called a triangle graph of a graph.

The dissertation, will be centered around some results in line graphs which will be

mimicked for a triangle graph of a graph.

1.2 Overview

Chapter 1 is a brief introduction to graph theory. We introduce the main structure

of this work, a graph. We then give some basic definitions in graph theory along with

examples illustrating these definitions. In Section 1.4, we study classes of graphs

which are relevant in this dissertation. Finally, in Section 1.5, we give some com-

monly known graph operations, in particular we discuss the concept of intersection

graphs.

In Chapter 2, we start by giving a brief history on line graphs. Then, we describe

and define line graphs followed by a few examples. We discuss line graphs of some

classes of graphs in Section 2.4, and conclude the section by stating and proving some

properties of line graphs of classes of graphs.

Our main objects of study appear in Chapter 3, where we start by establishing no-

tations for the rest of the dissertation. We then give a formal definition of a triangle

graph of a graph followed by examples and some properties. In all the other sections

that follow, we study triangle graphs of some classes of graphs. We state and prove
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some properties of these classes of graphs.

Chapter 4, investigates the triangle graph of a vertex-join. We begin by giving a for-

mal definition of a vertex-join of a graph. We then state and prove some properties

of the triangle graph of a vertex-join followed by some examples of classes.

In Chapter 5, we conclude this dissertation and point out some problems that emerged

from this study which may be of particular interest for further study.

1.3 Basic definitions

In this section, we define some concepts in graph theory which are of particular

interest in this dissertation. For the definitions in this section, we refer the reader to

[3, 6, 9], unless otherwise stated.

Definition 1.3.1. A graph is an ordered pair G = (V,E), where V is a non-empty

set of elements called vertices of G and E. The elements of E are called edges of G.

In graph theory, we use the idea of representing vertices as points and edges as lines to

form a graph. We often write V (G) to denote the vertex set of G and E(G), to denote

the edge set of G. The edge {p, q}, will join vertices p and q in G. Alternatively, we

denote the edge {p, q} by pq or qp. We say vertices p and q are endpoints of the edge

pq. Two vertices p and q are said to be adjacent to each other if they have a common

edge. Two distinct edges are adjacent or incident if they have a common end vertex.

If we have e = pq then e is said to be incident to vertices p and q.

The number of vertices in a graph is called the order of the graph and is denoted by

|V (G)| . The number of edges in a graph is called the size of the graph and is denoted

by |E(G)| .

Definition 1.3.2. A set of two or more edges connected to the same pair of vertices

is called multiple or parallel edges. An edge with one repeated endpoints is called
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a loop. A simple graph is a graph with no loops and multiple edges. Two adjacent

vertices are called neighbors. The set of all neighbors of a vertex p is called the open

neighborhood denoted by N(p). The closed neighborhood of a vertex p is given by

N [p] = N(p) ∪ {p} .

Definition 1.3.3. The degree of a vertex p, is the number of all the edges incident

to the vertex p and is denoted by deg(p). If a graph G has a loop at vertex p then

when counting the degree of the vertex p, the loop will be counted twice. The largest

degree of a graph G is called the maximum degree denoted ∆(G) and the minimum

degree is denoted by δ(G). A degree sequence of a graph G, is simply a list of all

degrees of each vertex in V (G). The sequence can be given in either nonincreasing or

nondecreasing order.

Definition 1.3.4. A graph G is a subgraph of a graph F if V (G) ⊆ V (F ) and

E(G) ⊆ E(F ). If G is a subgraph of F we can write G ⊆ F. G is a spanning subgraph

of F if V (G) = V (F ). G is an induced subgraph of F if every edge of F with endpoints

in V (G) is also an edge in G, hence we denote it by G[F ].

Definition 1.3.5. A graph G is bipartite if V (G) can be partitioned into two sets,

X and Y such that every edge of G is incident to a vertex of the set X and a vertex

of set Y.

Example 1.3.6. Consider the graph G given in Figure 1.1. The vertex set of the

graph G is V (G) = {v1, v2, v3, v4, v5, v6, v7, v8} and the edge set

E(G) = {e1, v1v2, v2v3, v2v5, v3v4, v4v7, v5v6, v6v7, v7v8, e10}. The order ofG is |V (G)| =

8 and the size is |E(G)| = 10. Edges e1 and e10 are loops. The degrees of the ver-

tices are as follows: deg(v1) = deg(v2) = deg(v7) = deg(v8) = 3 and deg(v3) =

deg(v4) = deg(v5) = deg(v6) = 2. Hence the degree sequence is 3, 3, 3, 3, 2, 2, 2, 2.

The open neighborhood of vertex v7 is given by N(v7) = {v4, v6, v8}, while the closed

neighborhood is given by, N [v7] = {v4, v6, v8} ∪ {v7}.
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v4

v7

e9
v1 v2

e2

e4

e6

v8 e10

v3

v5 v6

e5 e8

e1

e3 e7

Figure 1.1: A graph G.

Definition 1.3.7. A walk is a way of getting from one vertex to another, consisting

of an alternating sequence of vertices and edges, v0e1v1e2v2 . . . envn, such that all

consecutive vertices are adjacent to each other. If all the edges of a walk are different,

then we refer to it as a trail. If all the vertices of a trail are different, then we refer

to it as a path. A walk is closed if the first and last vertices are the same. If the first

and last vertices are distinct, then we refer to it as an open walk. A cycle is a trail

with all vertices different, however the first and last vertices are not different.

Example 1.3.8. Consider the graph G given in Figure 1.2. Sequence v1bv2fv6fv2hv3

is a walk which is not a trail. Sequence v1bv2fv6gv5ev2bv3 is a trail however it is not

a path. Sequence v1bv2fv6gv5 is a path as we can see that the vertices and the edges

are all different. Sequence v2hv3iv5cv4dv2 is a cycle since the first and last vertices

are the same.

G:

i

j

b

gc

h

e

f

v2 v3v1

v4 v5 v6

a
d

Figure 1.2: A graph to illustrate walks.
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Definition 1.3.9. A graph is said to be a connected graph if there is a path from

any one vertex to any other vertex. A graph that is not connected is a disconnected

graph.

Example 1.3.10. The graphs in Figure 1.3 are examples of a connected and a dis-

connected graph.

HG

Figure 1.3: A connected graph G and disconnected graph H.

Definition 1.3.11. A bridge is an edge in a graph G that when deleted, the resulting

graph is disconnected.

Definition 1.3.12. Consider the function Θ with the mapping Θ : V (G1) → V (G2)

where G1 and G2 are two simple graphs. G1 is isomorphic to G2 if Θ is a bijec-

tion which preserves adjacency and non-adjacency. Thus, we have uv ∈ E(G1) ⇔

Θ(u)Θ(v) ∈ E(G2) and we write G1
∼= G2.
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1.4 Classes of graphs

In this section, we discuss some well known classes of graphs. For the definitions in

this section, we refer the reader to [3, 6, 9, 16], unless otherwise stated.

A class of graphs is a set of graphs having certain specified properties. We discuss,

a few classes of graphs which are basic and relevant to this dissertation. We begin

with a class of graphs known as trees.

Definition 1.4.1. We define a tree as a graph in which any two vertices are connected

by a path and has no cycles. We denote a tree on n vertices as tn. A forest, is defined as

a union of trees. Some trees are classified based on their properties. A graph of order

n with vertex set V = {v1, v2, . . . , vn−1, x} and edge set E = {xv1, xv2, . . . , xvn−1}

is a tree called a star, denoted by Sn. A path is a tree of order n, with vertex set

V = {v1, v2, . . . , vn} and edge set E = {vivi+1 | for i ∈ {1, 2, . . . , n− 1} }, denoted

by Pn.

It is important to note that a tree has no multiple edges and loops, thus a tree is a

simple graph.

Example 1.4.2. The graphs given in Figure 1.4 are examples of trees.
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Tree, t10

Path, P3

Star, S9

x

Figure 1.4: Trees.

Definition 1.4.3. A null graph of order n is a graph with vertex set V = {v1, v2, . . . , vn}

and edge set E = {} = ∅, denoted by Nn.

Example 1.4.4. The graphs given in Figure 1.5 are examples of null graphs.

v1

v3

v2 v4

v5

v6

v7

v8

v9

v10

N1 N2 N3 N4

Figure 1.5: Null graphs.

Definition 1.4.5. A complete graph is a graph with vertex set V = {v1, v2, . . . , vn}

and edge set E = {vivj | i ̸= j i, j ∈ {1, 2, . . . , n}}, denoted by Kn.

10



Note that the degree of each vertex of a complete graph Kn is n− 1.

Example 1.4.6. The graphs given in Figure 1.6 are examples of complete graphs

namely; K1, K2, K3, and K4.

K3

K4

K2K1

Figure 1.6: Complete graphs.

Definition 1.4.7. A cycle graph of order n is a graph with vertex set V = {v1, v2, . . . , vn}

and edge set E = {v1v2, v2v3, v3v4, . . . , vn−1vn, vnv1}, denoted by Cn. Note that a cy-

cle graph is isomorphic to a closed trail with all the vertices different except for the

first and last vertex. In particular, C3 is often referred to as a triangle, C4 referred

to a square and C5 referred to a pentagon.

Example 1.4.8. The graphs given in Figure 1.7 are examples of cycle graphs namely;

C3, C4 and C5.
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v7

v8

v9

v10

v5v4

v6

v12v11

v1

v3v2

C3 C4 C5

Figure 1.7: Cycle graphs.

Definition 1.4.9. A graph G is called regular if all the vertices have the same degree,

thus a graph is k-regular if every vertex of G has degree k.

Note that a complete graph of order n, is an (n − 1)-regular graph and any cycle

graph is 2-regular.

Example 1.4.10. The graphs given in Figure 1.8 are examples of regular graphs

namely; 0-regular, 1-regular, 2-regular and 3-regular.

0-regular 1-regular

2-regular 3-regular

Figure 1.8: Regular graphs.

Definition 1.4.11. A wheel graph of order n is a graph with vertex set V =

{v1, v2, . . . , vn, x} and edge set

E = {{v1, v2} , {v2, v3} , . . . , {vn−1, vn} , {v1, x} , {v2, x} , . . . , {vn−1, x}} ,

12



denoted by Wn. Note that the edge of the form vix is called a spoke, while the edge

of the form vivi+1 where i ∈ {1, 2, . . . , n, n− 1} is called an arc of a wheel graph. For

further details on wheel graphs, we refer the reader to [16].

Example 1.4.12. The graphs given in Figure 1.9 are examples of wheel graphs

namely, W4 and W5.

W4 W5

Figure 1.9: Wheel graphs W4 and W5.

Definition 1.4.13. A flower graph is a graph with vertex set V = {1, 2, . . . , n, n +

1, . . . , n(m− 1)} and edge set

E = {{1, 2}, {2, 3}, . . . , {n−1, n}, {n, 1}}∪{{1, n+1}, {n+1, n+2}, {n+2, n+3},

{n+3, n+4}, . . . , {n+m−3, n+m−2}, {n+m−2, 2}}∪{{2, n+m−1}, {n+m−1, n+m},

{n+m,n+m+ 1}, {n+m+ 1, n+m+ 2}, . . . , {n+ 2(m− 2)− 1, n+ 2(m− 2)},

{n+ 2(m− 2), 3}}∪, . . . ,∪{{n, n+ (n− 1)(m− 2) + 1},

{n+(n−1)(m−2)+1, n+(n−1)(m−2)+2}, {n+(n−1)(m−2)+2, n+(n−1)(m−2)+3},

{n+ (n− 1)(m− 2) + 3, n+ (n− 1)(m− 2) + 4}, . . . , {nm− 1, nm}, {nm, 1}}.

Note that the m-cycles are called the petals and the n-cycle is called the center of

fn×m.
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The order of fn×m is given by |V (G)| = n(m− 1) and the size by |E(G)| = nm. For

further details on flower graphs, we refer the reader to [16].

Example 1.4.14. The graphs given in Figure 1.10 are examples of flower graphs

namely; f4×4 and f4×6.

4× 6 flower4× 4 flower

Figure 1.10: Flower graphs.

Definition 1.4.15. A Plane graph is a graph which is given on a R2 plane and where

none of the edges of the graph cross each other.

Definition 1.4.16. A Planar graph is a graph that is isomorphic to a plane graph.

For further details on plane and planar graphs, we refer the reader to [3].

Example 1.4.17. The two graphs given in Figure 1.11 are examples of a planar and

a non planar graph.

14



G H

Figure 1.11: A planar graph G and non planar graph H.

1.5 Graph operations

In this section, we discuss some of the most commonly used graph operations in graph

theory which are relevant to this work. For the definitions in this section, we refer

the reader to [2, 3, 8, 9].

1. The union of graph G1 and graph G2, denoted by G1 ∪ G2 is a graph G with

vertex set V (G) = V (G1) ∪ V (G2) and edge set E(G) = E(G1) ∪ E(G2).

Example 1.5.1. The graph in Figure 1.12 is an example of a union graph

G = G1 ∪ G2, with vertex set V (G) = {v1, v2, v3, v4, v5, u1, u2, u3, u4} and edge

set E(G) = {e1, e2, e3, e4, e5, e6} ∪ {h1, h2, h3, h4, h5}.
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h4 h5

G1

u1

h3

v4 v5

e5

v3v2

e2

u2 u3

G2

h2

h1

u4

e4

v1

e1
e3 e6

v4 v5

v3v2v1

e2 e5

e1
e3

e4
e6

u1

h3h1

h2

u3h4 h5
u4u2

G1 ∪G2

Figure 1.12: The union G1 ∪G2.

2. The intersection of graph G1 and graph G2, denoted by G1 ∩ G2 is a graph G

with vertex set V (G) = V (G1) ∩ V (G2) and edge set E(G) = E(G1) ∩ E(G2).

Example 1.5.2. The graph in Figure 1.13 is an example of the intersection of

graphs G = G1 ∩G2, with vertex set V (G) = {a, b} and E(G) = ab.

b

G1 G2

a

b

e

d

c

f

a

a b

G

Figure 1.13: The intersection G1 ∩G2.

3. The cartesian product of graph G1 and graph G2, denoted by G1×G2 is a graph

G with vertex set V (G) = V (G1)× V (G2) = {(ui, vj)|ui ∈ V (G1), vj ∈ V (G2)}
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and the edge set E(G) has elements {(ui, vj), (ut, vs)} where ui = ut and vjvs is

an edge in G2 or vj = vs and uiut is an edge in G1.

4. The lexicographic product of two graphs G1 and G2, denoted by G◦H is obtained

from the cartesian product by adding extra edges of the form, vertices (ui, vi)

and (uj, vj) are adjacent if uiuj ∈ E(G1) and vivj ∈ E(G2).

Example 1.5.3. Consider the graph G1 with vertex set V (G1) = {a, b} and

graph G2 with vertex set V (G2) = {0, 1, 2} in Figure 1.14. The graph G =

G1 × G2 in Figure 1.15 is an example of the cartesian product of graph G1

and graph G2, with vertex set V (G) = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}

and edge set E(G) = {00, 01, 01, 12, 12, 22}. The graph G1 ◦ G2 in Figure 1.15

is an example of the lexicographic product of graph G1 and graph G2 with

vertex set V (G1 ◦ G2) = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)} and edge set

E(G1 ◦G2) = {00, 01, 01, 12, 12, 22, a1, a2, a2, b1, b1, b2} .

1u

2

b

a

0

G1 G2

f

e

Figure 1.14: Graphs G1 and G2.
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(a, 0)

(a, 1)

(a, 2) (b, 2)

(a, 1)

(a, 0)

(a, 2)

G1 ◦G2G1 ×G2

00

12 12

22

11

01

00

12

22

12

b1a1

b2

11

b1

0101

a2

a2

(b, 0)

(b, 1)(b, 1)

(b, 2)

(b, 0)

01

Figure 1.15: Graphs G1 ×G2 and G1 ◦G2.

5. The ring sum of G1 and G2, denoted by G1 ⊕ G2, has vertex set V (G) =

V (G1) ∪ V (G2) and edge set E(G) = E(G1) ∪ E(G2) − E(G1) ∩ E(G2). Thus

for the edge set of the ring sum we take edges that are either in G1 or G2 but

not in both.

Example 1.5.4. Consider the graphs in Figure 1.16. V (G1) = {v1, v2, v3, v4, v5},

E(G1) = {a, b, c, d, e, f, g} and V (G2) = {v1, v3, v4, v6}, E(G2) = {f, g, h, i, j, k}.

The graph G1⊕G2 is an example of the ring sum of graph G1 and graph G2, with

vertex set V (G) = {v1, v2, v3, v4, v5, v6} and edge set E(G) = {a, b, c, d, e, h, i, j, k}.

f

i j

k

v6

e

v5

d
v5

v4

gf
a

a

c h h

e

i

v6

k

j

c

v2
v2

db

v1

v3 v4

v3 v4

b

v1
v1

v3

g

G2G1
G1 ⊕G2

Figure 1.16: The graph G1 ⊕G2.

6. The complement of the graph G, denoted by G is a graph with vertex set

V = {v1, v2, . . . , vn} and edge set E = {vivj | vivj /∈ E(G) } .

Example 1.5.5. Consider the graphs in Figure 1.17, graph G has vertex set
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V = {a, b, c, d, e, f} and edge set E = {ac, ae, bd, bf, ce, df}, while the comple-

ment of G has vertex set V = {a, b, c, d, e, f} and edge set

E = {ab, ad, af, bc, be, cd, cf, de, ef} .

f

d

e

f

c

b

a

d

a

G
G

e

b

c

bf

df

aeac

ce

bd

ef

de

cf

ad

bc

cd

be

afab

Figure 1.17: A graph G and the complement G.

7. A chord of a cycle of four or more vertices in a graph, is an edge connecting two

vertices of the cycle which are not adjacent in the cycle. A chordal graph is a

graph where every cycle of length four or more has a cycle chord. Note that a

chordal graph is not unique.

Example 1.5.6. The graphs in Figure 2.1 are examples of chordal graphs.
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G

F

H

Figure 1.18: Graph G and the chordal graph, H and F of G.

1.6 Intersection graph

In this section, we introduce another form of creating graphs, called intersection

graphs. For the definitions in this section, we refer the reader to [9, 14].

Definition 1.6.1. Let F = {f1, f2, . . . , fn} be a set of sets. An intersection graph

G is a graph with the vertex set V (G) = {f1, f2, f3, . . . , fn} and edge set E(G) =

{f1f2 | f1 ∩ f2 ̸= ∅ } .

There are many classes of intersection graphs in the literature. In this section, we

give one example of intersection graph called interval graphs.

Definition 1.6.2. A graph G is said to be an interval graph, if a set of intervals

on a real line can be put into one-to-one correspondence with a set of vertices. Two

vertices will be adjacent to each other if the intervals have non-empty intersection.
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Example 1.6.3. The graph in Figure 1.19 is an example of an interval graph. Each

interval corresponds to a vertex in graph G.

j

p

Graph G
Interval

i

pj
m

i

k

x

x

m

k

Figure 1.19: Interval graph.
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Chapter 2

Line graphs

2.1 Introduction

In this chapter, we discuss the concept of a line graph of a graph. We begin by

giving a brief background of line graphs. Then, we give a formal definition of a line

graph, illustrating with examples. Thereafter, we give some properties of line graphs

followed by line graphs of some known classes of graphs.

2.2 Background on line graphs

It is not clearly known as to when exactly, line graphs were introduced, however, we

trace it back as early as the year 1932, see [20]. We mentioned in Section 1.1, that

H. Whitney was the first person to introduce the concept of line graphs. In 1932,

H. Whitney proved that a connected graph can be completely removed from its line

graph under a special case, see [20]. Different authors followed on H. Whitney’s work

in which most rediscovered the concept and many came up with their own names,

Ø. Ore used the name interchange graphs, G. Sabidussi used the name derivative

graphs and L.W. Beineke used the name derived graphs just to mention a few, see [9].

The name line graph was first used by F. Harary and R.Z. Norman in 1960, [10], but
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before that line graphs were just commonly known as edge graphs.

2.3 Line graph of a graph

In this section, we give a formal definition of a line graph, followed by illustrations

of this concept through examples. We then give some well known properties of line

graphs. For further details of the discussion in this section, we refer the reader to

[3, 9, 19] unless stated otherwise.

Definition 2.3.1. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G) = {vivj = eij | for some i, j ∈ {1, . . . , n}} . The line graph of the graph G,

denoted by L(G) is a graph with vertex set V (L(G)) = E(G) and edge set E(L(G)) =

{eijeik | eij, eik ∈ E(G)} .

It is important to note that edge eij = eji since vi and vj are end points of an

edge without any order. Hence we can rewrite the edge set of the line graph as

E(L(G)) = {eijelk | eij, elk ∈ E(G)} where i ∈ {l, k} or j ∈ {l, k}.

Example 2.3.2. The graph G1 given in Figure 2.1 has vertex set

V (G1) = {v1, v2, v3, v4, v5, v6} and using the notation in Definition 2.3.1, has edge set

E(G1) = {e12, e23, e24, e34, e35, e45, e56} .

v1v2

v3

e35 e45

e56

e12

e23 e24

v5
v6

v4
e34

Figure 2.1: Graph G1.

We now construct the line graph L(G1) of the graph G1 given in Figure 2.2. L(G1)

has vertex set V (L(G1)) = E(G1) = {e12, e23, e24, e34, e35, e45, e56} and has edge set
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E(L(G1)) = {e12e23, e12e24, e23e24, e23e35, e23e34, e24e34, e24e45, e34e45, e34e35, e35e45}

∪ {e35e56, e45e56} .

e12e23

e23e24

e23e34

e24e45
e34e45

e34e35

e35e45

e24

e45e56

e45

e34
e23e35

e24e34

e23

e35e56

e56

e12

e12e24

e35

Figure 2.2: The line graph L(G1) of graph G1.

Example 2.3.3. The graph G2 given in Figure 2.3 has vertex set

V (G2) = {v1, v2, v3, v4, v5, v6, v7} and using the notation in Definition 2.3.1, has edge

set E(G2) = {e13, e23, e34, e35, e56, e57, e67}.

v4

v2

v7v6

e13

e35
e34

e57

e67

e56

e23

v1

v3

v5

Figure 2.3: Graph G2.

We now construct the line graph L(G2) of the graph G2 given in Figure 2.4. L(G2)

has vertex set V (L(G2)) = {e13, e23, e34, e35, e56, e57, e67} and edge set

E(L(G2)) = {e13e23, e13e34, e13e35, e23e34, e23e35, e34e35, e35e56, e35e57, e56e57}∪

{e56e67, e57e67} .
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e34

e57

e13

e56

e35e57

e57e67

e23e35 e34e35

e13e34e13e23

e35e56

e56e57

e56e67

e67

e23e34e23

e35

e13e35

Figure 2.4: The line graph L(G2) of graph G2.

The following proposition, states without proof, some well known basic properties of

line graphs.

Proposition 2.3.4. Let G be a graph and L(G) the line graph of G. Then

(a) G is connected if and only if L(G) is connected.

(b) L(H) is a subgraph of L(G) if H is a subgraph of G.

(c) The degree of vertex e in L(G) is given by dG(u) + dG(v)− 2, where e = uv is an

edge of the graph G.

We state the following well known lemma which will be used in proving Proposi-

tion 2.3.7.

Lemma 2.3.5. Let G be a graph of order n and size m with degree sequence d1, d2, . . . , dn.

Then

m =
1

2

i=n∑
i=1

di.

Proof. Consider an edge e = uv of graph G. Let d1 = dG(u) and d2 = dG(v), then

the edge e contributes +1 in d1 and +1 in d2. Thus summing the degrees counts each

edge twice. If u = v, then say d2 does not exist, so we have the edge e contributing
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2 in d1. Hence in the summation d1 + d2 + . . . + dn each edge of G, contributes +2.

Since there are m edges then,

2m = d1 + d2 + . . .+ dn

m =
1

2

n∑
i=1

di.

We state the following theorem on counting the number of edges of the line graph of

G without proof. However, we will prove an alternative proposition thereafter. We

refer the reader to [3, 9].

Theorem 2.3.6. Let G be a simple graph of order n and size m with degree sequence

d1, d2, . . . , dn. Then the number of edges of the line graph L(G) is given by,

m(L(G)) = −m+
1

2

i=n∑
i=1

(di)
2.

The following proposition is an alternative of Theorem 2.3.6. We refer the reader

to [6, 9] for further details.

Proposition 2.3.7. Let G be a graph of order n and size m and let L(G) be the line

graph of G. Let d1, d2, . . . , dn be the degree sequence of the graph G. Then the size of

L(G) is,

m(L(G)) =
n∑

i=1

(
di
2

)
.

Proof. Consider a simple graph G with the degree sequence d1, d2, . . . , dn, then it
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follows that,

m(L(G)) = −m+
1

2

i=n∑
i=1

(di)
2 by Theorem 2.3.6

= −1

2

n∑
i=1

di +
1

2

n∑
i=1

(di)
2 by Lemma 2.3.5

=
1

2

n∑
i=1

(di)
2 − 1

2

n∑
i=1

di

=
1

2

n∑
i=1

di(di − 1)

=
n∑

i=1

di(di − 1)(di − 2)!

2!(di − 2)!

=
n∑

i=1

di!

2!(di − 2)!

=
n∑

i=1

(
di
2

)
.

2.4 Line graphs of some classes of graphs

In this section, we give line graphs of some classes of graphs defined in Section 1.4.

2.4.1 Cycle graphs

Recall Definition 1.4.7, that a cycle graph of order n denoted by Cn, is a graph with

vertex set V = {v1, v2, . . . , vn} and edge set E = {v1v2, v2v3, v3v4, . . . , vn−1vn, vnv1}.

The following proposition states without proof some properties of cycle graphs, see [3,

6].

Proposition 2.4.1. Let Cn be a cycle graph of order n. Then,

• Cn is 2-regular.
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• Cn is a connected graph.

• The sum of the degrees of the vertices of Cn is twice the number of vertices.

We now state and prove a theorem on the line graph of a cycle graph. We refer the

reader to [3].

Theorem 2.4.2. Let Cn be a cycle graph of order n. Then the line graph L(Cn) of

Cn is a cycle graph of order n.

Proof. We know by Definition 1.4.7, that a cycle graph Cn is a graph with vertex

set V = {v1, v2, . . . , vn} and edge set E = {v1v2, v2v3, v3v4, . . . , vn−1vn, vnv1}. By

Definition 2.3.1, the vertex set of the line graph of Cn is given by,

V (L(Cn)) = {v1v2, v2v3, . . . , vn−1vn, vnv1}

=
{
e12, e23, . . . , e(n−1)n, en1

}
.

To obtain the edge set of the line graph L(Cn), we relabel vertex eij by wi where

i < j < n − 1, wn−1 for e(n−1)n and wn for en1, thus V (L(Cn)) = {w1, w2, . . . , wn}.

Note that since eij = vivj, then we know that eij and ejk will be an edge of L(Cn).

Hence the edge set is given by,

E(L(Cn)) =
{
e12e23, e23e34, . . . , e(n−1)nen1, en1e12

}
= {w1w2, w2w3, . . . wn−1wn, wnw1} .

This implies that L(Cn) is a cycle graph of order n, by Definition 1.4.7.

Example 2.4.3. The graphs in Figure 2.5 shows a cycle C5, and illustrates the

constructed line graph L(C5). The cycle graph C5 has order n = 5, size m = 5 and

degree sequence 2, 2, 2, 2, 2. The Line graph of C5, L(C5) has order 5 and size 5.
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v1

v2

v3

v4v5

e23

e34

e45

e51

e34e51

e12 e23

e45

e12

C5 L(C5)

Figure 2.5: C5 and L(C5).

We verify Theorem 2.3.6 for the size of L(C5), using size and degree sequence of C5.

|E[L(C5)]| = −m+
1

2

i=n∑
i=1

(di)
2

= −5 +
1

2
(22 + 22 + 22 + 22 + 22)

= −5 +
1

2
(20)

= 5.

2.4.2 Trees in general

Recall Definition 1.4.1, that a tree is a connected graph with no cycles. The following

proposition states without proof some properties of trees. We refer the reader to [3,

6, 9].

Proposition 2.4.4. Let tn be a tree on n vertices. Then,

(a) tn has n− 1 edges.

(b) tn has at least two vertices of degree 1.

(c) tn has one unique path between every pair of distinct vertices.

(d) tn has the degree sequence d1, d2, . . . , dn, for n ≥ 2 iff
i=n∑
i=1

di = 2n− 2.
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(e) Every tree is a bipartite graph.

We now state and prove a proposition on the line graph of a tree.

Proposition 2.4.5. Let tn be a tree on n vertices. Then the line graph of tn, L(tn)

has n− 1 vertices.

Proof. By Proposition 2.4.4, tn has n−1 edges. Hence by Definition 2.3.1, the vertex

set of the line graph is the edge set of tn.

Example 2.4.6. The graphs in Figure 2.6 shows a tree, t10 and illustrates the con-

structed line graph L(t10). The tree, t10 has order n = 10, size m = 9 and degree

sequence 1, 1, 1, 1, 1, 2, 2, 3, 3, 3. The Line graph of t10, L(t10) has order 9 and size 11.

t10
L(t10)

Figure 2.6: t10 and L(t10).

2.4.3 Path trees

Recall Definition 1.4.1, that a path tree of order n is a graph with vertex set V =

{v1, v2, . . . , vn} and edge set E = {vivi+1 | for i ∈ {1, 2, . . . , n− 1} }. The following

proposition, states without proof a property of Pn. We refer the reader to [3] for

further details.

Proposition 2.4.7. Let Pn be a Path tree on n vertices. Then Pn is a tree with 2

vertices of degree 1 and n− 2 vertices of degree 2.
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We now state a theorem of the line graph of a path tree Pn. We refer the reader

to [3, 9] for further details.

Theorem 2.4.8. Let Pn be a path tree on n vertices where n ≥ 2. Then the line graph

of Pn, L(Pn) is a path tree Pn−1.

Proof. We know by Definition 1.4.1, that a path tree of order n is a graph with vertex

set V = {v1, v2, . . . , vn} and edge set E = {vivi+1 | for i ∈ {1, 2, . . . , n− 1} }. By

Definition 2.3.1, the vertex set of the line graph of Pn is given by,

V (L(Pn)) = {v1v2, v2v3, . . . , vn−1vn}

=
{
e12, e23, . . . , e(n−1)n

}
.

To obtain the edge set of the line graph L(Pn), we relabel vertex eij by wi where

i < j and wn−1 for e(n−1)n, thus V (L(Pn)) = {w1, w2, . . . , wn−1} . Hence the edge set

is given by,

E(L(Pn)) = {e12e23, e23e34, . . . , en−2en−1, en−1en}

= {w1w2, w2w3, . . . wn−2wn−1} .

This implies that L(Pn) is a path tree of order n− 1, Pn−1.

Theorem 2.4.9. The line graph of a simple graph G is a path tree, if and only if G

is a path tree.

Proof. Let G be a path tree Pn on n vertices. Then by Theorem 2.4.8, the line graph

L(Pn) is a path tree, Pn−1.

Now let L(G) be a path tree. Thus the degree of each vertex of L(G) is either 2 or

1, so no vertex has degree greater than 2. Hence G must either be a cycle graph or

a path graph, however it cannot be a cycle graph because by Theorem 2.4.2 the line

graph of a cycle is a cycle. Thus G is a path tree.

Example 2.4.10. The graphs in Figure 2.7 shows a path tree P5 and illustrates the

constructed line graph L(P5). The tree, P5 has order n = 5, size m = 4 and degree

sequence 1, 1, 2, 2, 2. The Line graph of P5, L(P5) has order 4 and size 3.
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P5 L(P5)

Figure 2.7: P5 and L(P5).

2.4.4 Star trees

Recall Definition 1.4.1, that a star graph of order n is a graph with vertex set

V (Sn) = {v1, v2, . . . , vn−1, x} and edge set E(Sn) = {xv1, xv2, . . . , xvn−1}. The fol-

lowing proposition states without proof some properties of star trees, see [5, 17].

Proposition 2.4.11. Let Sn be a star tree. Then Sn has n − 1 vertices of degree 1

and one vertex of degree n− 1.

We now state and prove a property of the line graph of a star tree.

Proposition 2.4.12. Let Sn be a star tree. Then the line graph of Sn, L(Sn) is a

complete graph of order n− 1.

Proof. We know by Definition 1.4.1, a star graph is a graph with vertex set V (Sn) =

{v1, v2, . . . , vn−1, x} and edge set E(Sn) = {xv1, xv2, . . . , xvn−1}. By Definition 2.3.1,

the vertex set of the line graph of Sn is given by,

V (L(Sn)) = {xv1, xv2, . . . , xvn−1}

=
{
ex1, ex2, . . . , ex(n−1)

}
.

To obtain the edge set of the line graph L(Sn), we relabel vertex exi by wi, thus

V (L(Sn)) = {w1, w2, . . . , wn−1}. Hence, the edge set is given by

E(L(Sn)) = {wiwj | i ̸= j and i, j ∈ {1, 2, . . . , n− 1}} . By Definition 1.4.5 of a

complete graph, L(Sn) is a complete graph of order n− 1.

Example 2.4.13. The graphs in Figure 2.8 shows a star graph S8 and illustrates the

constructed line graph L(S8). The star graph, S8 has order n = 8, size m = 7 and

degree sequence 1, 1, 1, 1, 1, 1, 1, 7. The Line graph of S8, L(S8) is a complete graph

of order 7 and is 6-regular.
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S8 L(S8)

Figure 2.8: S8 and L(S8).

2.4.5 Complete graphs

Recall Definition 1.4.5, that a complete graph is a graph with vertex set V =

{v1, v2, . . . , vn} and edge set E = {(vivj) | i ̸= j i, j ∈ {1, 2, . . . , n}}. The following

proposition states without proof some properties of complete graphs. We refer the

reader to [3, 6] for further details.

Proposition 2.4.14. Let Kn be a complete graph of order n. Then,

• Kn is (n− 1)-regular.

• Every two vertices are adjacent.

• The number of edges is given by n(n− 1)/2.

Example 2.4.15. The graphs in Figure 2.9 shows a complete graphK4 and illustrates

the constructed line graph L(K4). The complete graphK4 has order n = 4, sizem = 6

and degree sequence 3, 3, 3, 3. The Line graph of K4, L(K4) has order 6 and size 12.
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K4 L(K4)

Figure 2.9: K4 and L(K4).

2.5 Conclusion

In this chapter, we defined the line graph of a graph. We gave a few examples

and properties of a line graph of a graph. Using the classes of graphs we stated in

Chapter 1, we gave line graphs of some of these classes of graphs. We were able to

state and prove some properties of line graphs for these classes of graphs.
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Chapter 3

Triangle graph of a graph

3.1 Introduction

In this chapter, we discuss the concept of a triangle graph of a graph. We begin by

giving a formal definition of a triangle graph of a graph and illustrate with examples.

Then, we give some properties of triangle graphs. Thereafter, we give some triangle

graphs of some classes of graphs.

In this chapter to the end of the dissertation, a graph will mean a simple graph, that

is a graph with no parallel edges and no loops.

3.2 Basic definition

In this section, we begin by defining some notations and then giving a formal definition

of a triangle of a graph. In addition, we mention, the concept of the cycle graph of a

graph and illustrate using examples the difference between a cycle graph of a graph

and the new defined, triangle graph of a graph.

Definition 3.2.1. A triangle, is a subgraph of G isomorphic to C3. Thus a triangle

is a subgraph with vertex set {vi, vj, vk} such that vi, vj and vk are distinct vertices

and edge set {vivj, vivk, vjvk} .
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Notations:

Let G be a graph of order n with vertex set V (G) = {v1, v2, . . . , vn} and edge set

E(G). Let vivj ∈ E(G), we denoted vivj by eij = eji. A triangle on vertex set

{vi, vj, vk} will be denoted by tijk = tikj = tjki = tjik = tkij = tkji. We denote the set

of triangles of G by T (G).

We are now in the position to define the triangle graph of a graph.

Definition 3.2.2. Let G be a graph. We define the triangle graph of G, to be a graph

denoted by, T∆(G) with vertex set V (T∆(G)) = T (G) = {tijk | eij, ejk, eik ∈ E(G) }

and edge set E(T∆(G)) = {tijktlmn | {i, j, k} ∩ {l,m, n} ̸= ∅ and tijk, tlmn ∈ T (G) }.

Note that the triangle graph of a graph is not the same as the cycle graph of a graph,

where the cycle is of order 3. For cycle graphs of a graph, we refer the reader to [13],

but we give a formal definition of a cycle graph of a graph, and illustrate with an

example the difference with triangle graph of a graph.

Definition 3.2.3. Let G be a graph. We define the cycle graph of a graph to be

a graph denoted by C(G), where the vertices are the chordless cycles of G and two

vertices are said to be adjacent if their corresponding chordless cycles share a common

edge.

Example 3.2.4. The graph G1 given in Figure 3.1 has vertex set

V (G1) = {v1, v3, v4, v5, v6, v7, v8, v9} and edge set

E(G1) = {e14, e15, e34, e45, e57, e59, e67, e68, e78, e79} . The set of triangles of G1, is

T (G1) = {v1v4v5, v5v7v9, v6v7v8} = {t145, t579, t678}. The triangle graph of G1 has

vertex set, V (T∆(G1)) = T (G1) = {t145, t579, t678} and has edge set E(T∆(G1)) =

{t145t579, t579t678} .
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e34 e45 e59

e57

e68

e15 t579t678t145t579

G1

t579

t678

T∆(G1)

v7

e78e67

v8v6

v3 v4 v5 v9

e14

v1

e79

t145

Figure 3.1: Graph G1 and the triangle graph of G1.

We now construct the cycle graph of G1 where the cycles are of order 3. The cycle

graph will have vertex set {t145, t678, t679}. We note that there is no edge intersection

between t145 and t579, t145 and t678 and t579 and t678. Hence E[C(G)] = {}.

t579

t678t145

Figure 3.2: The cycle graph of G1.

Example 3.2.5. The graph G2 given in Figure 3.3 has vertex set

V (G2) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} and edge set

E(G2) = {e12, e13, e23, e24, e34, e35, e45, e46, e56, e67, e68, e78, e79, e8,10, e9,10}. The set of

triangles ofG2, T (G2) = {v1v2v3, v2v3v4, v3v4v5, v4v5v6, v6v7v8} = {t123, t234, t345, t456, t678}.

The triangle graph ofG2 has vertex set V (T∆(G2)) = T (G2) = {t123, t234, t345, t456, t678}

and has edge set E(T∆(G2)) = {t123t234, t123t345, t234t345, t234t456, t345t456, t456t678} .
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e12

e45

v5
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e67

t123

t456
t678

t234

t345

t123t234

t123t345

t234t456

t234t345

t345t456

t456t678

G2
T∆(G2)

Figure 3.3: Graph G2 and the triangle graph of G2.

We now construct the cycle graph of G2 where the cycles are of order 3 only. The cycle

graph will have vertex set {t123, t234, t345, t456, t678} and edge set {t123t234, t234t345, t345t456} .

t123

t234

t345

t456

t678

Figure 3.4: The cycle graph of G2.

3.2.1 Basic properties

We now state and prove some basic properties of a triangle graph of a graph.

We recall Definition 1.3.2 that a graph is simple if it has no loops and multiple edges.

Thus if G is a simple graph, it implies that there is at most one edge between each

pair of distinct vertices.

Proposition 3.2.6. Let G be a graph and let T∆(G) be the triangle graph of G. Then,

(a) T∆(G) is a simple graph.

(b) T∆(G) is an empty graph of order 0 if G is a tree of any order.

Proof. (a) By Definition 3.2.2, of a triangle graph, T∆(G) is a simple graph since

there is a single edge connecting a pair of distinct triangles whose vertex sets has

a non-empty intersection.
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(b) Let G be a tree of any order. By Definition 1.4.1, a tree has no cycles, which

implies that G does not contain any set of triangles. Thus T (G) = {} = ∅, hence

T∆(G) is an empty graph.

Proposition 3.2.7. Let G be a graph and T∆(G) the triangle graph of G. T∆(G) is

empty if and only if G has no subgraph isomorphic to C3.

Proof. Assume T∆(G) is an empty graph of order 0. Then V (T∆(G)) = {} . Thus

T (G) = {} . This implies, the set of triangles of G is empty. Hence G has no cycles

of order 3.

Assume that the graphG has no cycles of order 3. Then the set of triangles T (G) = {}.

This implies V (T∆(G)) = {}. Therefore, T∆(G) has order 0.

Recall that tijk is a triangle with vertex set {vi, vj, vk} which we now denote by V (tijk).

Recall that T (G) is the set of all triangles of G. We denote the union of the set of

vertices of all triangles of G by V (T (G)) = {vi | vi ∈ V (tijk) where tijk ∈ T (G) } .

Proposition 3.2.8. If V (T (G)) can be partitioned into V (T1(G)) and V (T2(G))

where T1(G) ⊂ T (G) and T2(G) ⊂ T (G), then T∆(G) is a disconnected graph.

Proof. Let T1(G) ⊂ V (T∆(G)), T2(G) ⊂ V (T∆(G)). Let T1(G) be the set of triangles

of G given by

T1(G) = {vivjvk | vivj, vivk, vjvk ∈ E(G) }

and let T2(G) be the set of triangles of G given by

T2(G) = {vxvyvz | vxvy, vxvz, vyvz ∈ E(G) }

where {i, j, k} ∩ {x, y, z} = ∅. Hence we have that

V (T1(G)) = {vi | vi ∈ V (tijk) ∀ tijk ∈ T1(G) }

and V (T2(G)) = {vx | vx ∈ V (txyz) ∀ txyz ∈ T2(G) } . Hence by definition of the tri-

angle graph, there will be no edges between any vertex of T∆(G) in T1(G) and a
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vertex T2(G). By Definition 1.3.9, the graph T∆(G) is disconnected since there exist

no path between the vertices in T1(G) and T2(G) in the construction of T∆(G).

Corollary 3.2.9. Let G be a graph of order n, V (T (G)) be the vertices of all triangles

of G and let Ti(G) ⊂ T (G). If V (T (G)) can be partitioned into q sets,

V (T1(G)), V (T2(G)), . . . , V (Tq(G)), then the triangle graph T∆(G) is a disconnected

graph with q components.

Example 3.2.10. Let G be the graph given in Figure 3.5. Then V (T (G)) =

{t234, t678, t579} can be partitioned into V (T1(G)) and V (T2(G)) as follows, V (T1(G)) =

{t234} and V (T2(G)) = {t678, t579}. The triangle graph T∆(G) is shown in the same

Figure 3.5 as a disconnected graph with 2 components.

v6 v8

v7

v9v5v4v3

G

v1

v2

t579 t678t234

T∆(G)

Figure 3.5: Graph G and the triangle graph T∆(G).

3.3 Triangle graphs of certain classes of graphs

In this section, we discuss triangle graphs of certain classes of graphs.

40



3.3.1 Triangle graph of a wheel graph

Recall Definition 1.4.11 that a wheel graph denoted Wn, is a graph with vertex set

V = {v1, v2, . . . , vn−1, vx} and edge set

E = {{v1, v2} , {v2, v3} , . . . , {vn−2, vn−1} , {vn−1, v1} , {v1, vx} , {v2, vx} , . . . , {vn−1, vx}} .

It is clear that an edge set of the form {vivi+1, vivx, vi+1vx}, for i ∈ {1, 2, . . . , n − 1}

gives a triangle in Wn. Note that when i = n − 1 then i + 1 = 1. The following

proposition summarizes a few properties on wheel graphs.

Proposition 3.3.1. Let Wn be a wheel graph. Then,

• vertex vx will have degree n− 1.

• the number of edges is given by 2(n− 1).

• the number of triangles in Wn is n− 1 if n > 4.

• the number of triangles in Wn is n if n = 4.

• Wn is a planar graph.

We are now in a position to state and prove a proposition on the triangle graph of a

wheel graph. We note that by definition of a wheel graph, Wn is a simple graph if

n ≥ 4. Thus we only state the proposition when n ≥ 4.

Proposition 3.3.2. Let Wn be a wheel graph and let T∆(Wn) be the triangle graph

of Wn. Then T∆(Wn) is a complete graph Kn if n = 4.

Proof. The graphW4 is given in Figure 3.6. Thus T (W4) = {v1v2vx, v2v3vx, v3v1vx, v1v2v3} =

{z1, z2, z3, z4}, respectively. Hence V (T∆(W4)) = {z1, z2, z3, z4}. But vx is a vertex of

triangles z1, z2 and z3, hence z1z2, z2z3 and z3z1 are edges of T∆(W4). In addition,

triangle v1v2v3 = z4 has a common vertex with all other three triangles z1 z2 and

z3. Thus z1z4, z2z4 and z3z4 are edges of T∆(W4). Thus we have T∆(W4) a graph on
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v1

v2v3

W4

vx

Figure 3.6: The wheel graph, W4.

vertex set {z1, z2, z3, z4} and edge set {zizj|i ̸= j and i, j ∈ {1, 2, 3, 4}} which is a

complete graph K4.

Proposition 3.3.3. Let Wn be a wheel graph and let T∆(Wn) be the triangle graph

of Wn. Then T∆(Wn) is a complete graph Kn−1 if n > 4.

Proof. By the recalled definition of a wheel graph, it is clear that, a subgraph of Wn

with edge set {vivi+1, vi+1vx, vivx} is a triangle. We denote this triangle by ti(i+1)x

and we label ti(i+1)x by zi. Thus

T (Wn) = {ti(i+1)x | i ∈ {1, 2, . . . , n− 1} and i+ 1 = 1 if i = n }

= {z1, z2, . . . , zn−1} = V (T∆(Wn)).

But vertex vx is in all the triangles zi. Hence there is an edge between all pairs zi, zj

in V (T∆(Wn)). Thus edge set E(T∆(Wn)) = {zizj | i ̸= j, i, j ∈ {1, 2, . . . , n − 1} }.

Thus, T∆(Wn) is a complete graph of order n− 1.

Corollary 3.3.4. Let Wn be a wheel graph and let T∆(Wn) be the triangle graph of

Wn. Then the triangle graph T∆(Wn) is n− 2 regular.

Corollary 3.3.5. Let Wn be a wheel graph and let T∆(Wn) be a triangle graph of Wn.

Then the number of edges of T∆(Wn) is given by (n−1)(n−2)
2

.

42



3.3.2 Triangle graph of a Helm Graph

In this subsection, we define a special class of graphs called helm graphs which are

derived from wheel graphs.

Definition 3.3.6. A Helm graph, denoted by Hn is a graph obtained from a wheel

graph Wn, by adding n − 1 edges and n − 1 vertices such that the vertex set is

V = {v1, v2, . . . , vn−1, vx, w1, w2, . . . , wn−1} and edge set

E = {{v1, v2} , {v2, v3} , . . . , {vn−2, vn−1} , {vn−1, v1} , {v1, vx} , {v2, vx} , . . . , {vn−1, vx}}

∪ {v1w1, v2w2, v3w3, . . . , vn−1wn−1} .

For further details on helm graphs, we refer the reader to [21].

It is clear that the triangles of the wheel graph Wn are the triangles of the new graph

Hn. The following proposition summarizes a few properties on helm graphs.

Proposition 3.3.7. Let Hn be a helm graph. Then,

• Hn is connected.

• vertex vx has degree n− 1.

• the order of Hn is 2n− 1 and the size is 3(n− 1).

• the number of triangles in Hn is n− 1.

• Hn is a planar graph.

We are now in a position to state and prove a proposition on the triangle graph of a

helm graph.

Proposition 3.3.8. Let Hn be a helm graph of order 2n − 1 and let T∆(Hn) be the

triangle graph of Hn. Then T∆(Hn) is a complete graph Kn−1.

Proof. For this proof we apply the same argument as in Proposition 3.3.3 on wheel

graphs.
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Corollary 3.3.9. Let Hn be a helm graph of order 2n − 1 and let T∆(Hn) be the

triangle graph of Hn. Then triangle graph T∆(Hn) is n− 2 regular.

Example 3.3.10. The graphs in Figure 3.7 are an example of a helm graph, H4 and

its triangle graph T∆(H4).

w1

w3w4

H4 T∆(H4)

t1 t2

t2

t3

t4

x

v2

v3

t3

v1

v4

t1

w2

t4

Figure 3.7: H4 and T∆(H4).

3.3.3 Triangle graph of a Sunflower graph

In this subsection, we define a special class of flower graphs called sunflower graphs.

For the definition of a flower graph we refer the reader to Chapter 1, Definition 1.4.13.

Definition 3.3.11. A sunflower graph denoted by Sn×3, is a flower graph where

m = 3 and n ≥ 2 with vertex set V = {v1, v2, . . . , vn, w1, w2, . . . , wn} and edge set

E = {v1v2, v2v3, . . . , vn−1vn, vnv1} ∪ {v1w1, v1w2, v2w2, . . . , vn−1wn, vnwn, vnw1} .

By Definition 3.2.1 of a triangle, it is clear that the edge set of the form

{vivi+1, vi+1wi, viwi} for i ∈ {1, 2, . . . , n} and i + 1 = 1 if i = n, is an edge set of a

triangle of Sn×3. Thus the vertex set for this triangle is {vi, vi+1, wi} and hence the

triangle will be denoted by tii(i+1) = ti.

Proposition 3.3.12. Let Sn×3 be a sunflower graph. Then,

• Sn×3 is a connected graph.
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• the order of Sn×3 is 2n and the size is 3n.

• the degree sequence of vertices is given by 2, 2, 2 . . . , 2︸ ︷︷ ︸
n

, 4, 4, 4, 4︸ ︷︷ ︸
n

.

There are three different cases for triangle graphs of sunflower graphs to be considered

namely; n = 2, n = 3 and n > 3.

Theorem 3.3.13. Let G = S2×3 be a sunflower graph and let T∆(G) be the triangle

graph of S2×3. Then T∆(G) is a path graph P2.

t1 t2

t1

t2

v2v1

w1

w2

S2×3

T∆(S2×3) = P2

Figure 3.8: S2×3 and T∆(S2×3).

Proof. The graph G = S2×3 is given in Figure 3.8. Then the set of triangles of G,

T (G) = {v1v2w1, v1v2w2} = {t112, t221} = {t1, t2}. Hence V (T∆(G)) = {t112, t221}.

The edge set E(T∆(G)) = {t112t221} = {t1t2} since {1, 1, 2} ∩ {2, 2, 1} is not empty.

Hence, T∆(G) is a path graph P2.

We now consider the sunflower graph S3×3.

Theorem 3.3.14. Let G = S3×3 be a sunflower graph and let T∆(G) be a triangle

graph of S3×3. Then T∆(G) is a complete graph K4.
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Figure 3.9: S3×3 and T∆(S3×3).

Proof. The graph G = S3×3 is given in Figure 3.9. Then the set of triangles of G,

T (G) = {v1v2v6, v2v3v4, v4v5v6, v2v4v6} = {t1, t2, t3, t4} = {V (T∆(G))}. It is clear

that each triangle ti has a common vertex with all the other triangles. Hence, T∆(G)

is a complete graph K4.

We now consider the sunflower graph Sn×3 for n > 3.

Theorem 3.3.15. Let G = Sn×3 be a sunflower graph for n > 3 and let T∆(G) be

the triangle graph of Sn×3. Then T∆(G) is a cycle graph Cn.

Proof. By Definition 3.3.11 of a sunflower graph, the triangles of G are denoted by

tii(i+1) = ti where i+ 1 = 1 if i = n and i ∈ {1, 2, . . . , n}. Thus

V (T∆(G)) = {tii(i+1) | i ∈ 1, 2, . . . , n and i+ 1 = 1 if i = n }

= {t112, t223, t334, . . . , tnn1}

= {t1, t2, t3, . . . , tn}.

By definition, {i, i, i+ 1} ∩ {i+ 1, i+ 1, i+ 2} ̸= ∅ for defined i. Thus

E(T∆(G)) = {tii(i+1)t(i+1),(i+1),(i+2) | i ∈ 1, 2, . . . , n and i+ 1 = 1 if i = n }

= {titi+1 | i ∈ 1, 2, . . . , n and i+ 1 = 1 if i = n }

= {t1t2, t2t3, t3t4, . . . , tn−1tn, tnt1}.

Hence, T∆(G) is a cycle graph Cn.
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Example 3.3.16. Consider S4×3 given in Figure 3.10. The set of triangles T (S4×3) =

{t1, t2, t3, t4}.Hence, the set of vertices of the triangle graph, V (T∆(S4×3)) = {t1, t2, t3, t4}.

The edge set of the triangle graph, E(T∆(S4×3)) = {t1t2, t2t3, t3t4, t1t4}.Hence, T∆(S4×3) =

C4 verifying Theorem 3.3.15.

t1

t2

t3

t4

t1

t2t3

t4

v1

v2v3

v4

w1

w2

w3

w4

S4×3
T∆(S4×3)

Figure 3.10: S4×3 and T∆(S4×3).

3.3.4 Triangle graph of a fan graph

Definition 3.3.17. A fan graph denoted by fn, is a graph with vertex set

V = {v1, v2, . . . , vn−1, vx} and edge set

E = {{v1, v2} , {v2, v3} , . . . , {vn−2, vn−1} , {v1, vx} , {v2, vx} , . . . , {vn−1, vx}} .

By Definition 3.2.1 of a triangle, it is clear that the edge set of the form

{vivi+1, vivx, vi+1vx} for i ∈ {1, 2, . . . , n−2}, gives a triangle in fn and we denote this

triangle by ti(i+1)x. For further details on fan graphs, we refer the reader to [15, 18].

We now state some basic properties of fan graphs.

Proposition 3.3.18. Let fn be a fan graph. Then,

• fn is a connected graph.

• vertex vx has degree n− 1.
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• the order of fn is n+ 1 and the size is 2n− 3.

• the number of triangles in fn is n− 2.

We are now in a position to state and prove a theorem on the triangle graph of a fan

graph.

Theorem 3.3.19. Let fn be a fan graph and let T∆(fn) be a triangle graph of fn.

Then T∆(fn) is a complete graph Kn−2.

Proof. By Definition 3.3.17 of a fan, the triangles have edge sets of the form {vivi+1, vivx, vi+1vx}

for i ∈ {1, 2, . . . , n − 2} denoted by ti(i+1)x. Let triangle ti(i+1)x be labeled ti. Then

T (fn) = {t1, t2, . . . , tn−2} = {V (T∆(fn))}. But each ti(i+1)x has vertex vx, thus

E(T∆(fn)) = {titj | i ̸= j and i, j ∈ {1, 2, . . . , n − 2} }. Hence, T∆(fn) is a com-

plete graph of order n− 2.

Example 3.3.20. Consider the fan graph, f4 given in Figure 3.11. The set of tri-

angles, T (f4) = {t1, t2, t3}. Thus, the vertex set of the triangle graph, V (T∆(f4)) =

{t1, t2, t3}. But vx is a vertex of each triangle, thus the edge set of the triangle graph,

E(T∆(f4)) = {t1t2, t2t3, t1t3}. Hence, T∆(f4) = K3 verifying Theorem 3.3.19.

t1 t2 t3

t1

t2 t3

v1 v2 v3 v4

vx

f4

T∆(f4) = K3

Figure 3.11: f4 and T∆(f4).

Corollary 3.3.21. Let fn be a fan graph and let T∆(fn) be the triangle graph of fn.

Then triangle graph T∆(fn) is n− 3 regular.
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3.3.5 Triangle graph of a Friendship graph

Definition 3.3.22. A friendship graph denoted by Fn, is a graph with vertex set

V = {v1, v2, . . . , v2n, vx} and edge set

E = {{v1, v2} , {v3, v4} , . . . , {v2n−1, v2n} , {v1, vx} , {v2, vx} , . . . , {v2n, vx}} .

By Definition 3.2.1 of a triangle, it is clear that the edge set of the form

{vivi+1, vivx, vi+1vx} for i ∈ {1, 3, 5, . . . , 2n− 1}, gives a triangle in Fn. We now state

some basic properties of friendship graphs. For further detail on friendship graphs,

we refer the reader to [18].

Proposition 3.3.23. Let Fn be a friendship graph. Then,

• Fn is a connected graph.

• the order of Fn is 2n+ 1 and the size is 3n.

• the number of triangles in Fn is n.

• Fn is a planar graph.

We are now in a position to state and prove a theorem on the triangle graph of a

friendship graph.

Theorem 3.3.24. Let Fn be a friendship graph and let T∆(Fn) be the triangle graph

of Fn. Then T∆(Fn) is a complete graph Kn.

Proof. Without loss of generality, we illustrate the proof using F6 in the diagram in

Figure 3.12.

The triangles in F6 are denoted by ti, thus we have the following set of triangles of F6,

T (F6) = {t1, t2, t3, t4, t5, t6} . This implies that V (T∆(F6)) = {t1, t2, t3, t4, t5, t6} , the

vertex set of T∆(F6). Since all triangles in F6 share a common vertex vx, it implies that

each vertex of T∆(F6) is connected to all the other vertices. This implies that the edge

set of T∆(F6) is E(T∆(F6)) = {t1t2, t1t3, . . . , t1tn, t2t3, . . . , t2tn, t3t4, . . . , t3tn, t4t5, t4t6, t5t6, t1t6} .

Hence, T∆(Fn) = T∆(F6) is a complete graph Kn = K6.
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t1

t2

t3

t6

t4

t5

t1 t2

t3

t4t5

t6

F6

v1 v2

v3

v4

v5

v6

v7v8

v9

v10

v11

v12

T∆(F6)

vx

Figure 3.12: Illustration for the proof of Theorem 3.3.24.

3.4 Conclusion

In this chapter, we defined the triangle graph of a graph. We introduced some nota-

tions which we used throughout the chapter. We clarified the difference between the

triangle graph of a graph and the cycle graph of a graph, where the cycle is of order

3. Thereafter, we stated and proved some basic properties of a triangle graph of a

graph. We then discussed triangle graphs of certain classes of graphs, namely; helm

graphs, sunflower graphs, fan graphs and friendship graphs.
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Chapter 4

Triangle graph of a vertex-join

4.1 Introduction

In this chapter, we begin by defining the vertex-join of a graph, then we give some

properties of triangle graphs of vertex-join of graphs. Finally, we discuss some well

known classes of graphs which can be defined as vertex joins of other classes. Note

that we only discuss simple graphs in this chapter.

4.2 Basic definition

In this section, we give a formal definition of a vertex-join of a graph, followed by

illustrations of this concept through examples.

Definition 4.2.1. Let G be a graph of order n with vertex set V = {v1, v2, . . . , vn}

and edge set E(G). The vertex-join of G is the graph denoted Ĝ with vertex set

V (Ĝ) = V ∪{vx} , where x /∈ {1, . . . , n} and edge set E(Ĝ) = E(G)∪{v1vx, v2vx, . . . , vnvx} .

Thus, the vertex-join of a graph G is a graph of order n+ 1.

Example 4.2.2. The graphG given in Figure 4.1 has vertex set V (G) = {v1, v2, v3, v4}

and edge set E(G) = {v1v2, v2v4, v3v4, v1v3}. The vertex-join of graph G has vertex
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set V (Ĝ) = {v1, v2, v3, v4} ∪ {vx} and edge set

E(Ĝ) = {v1v2, v1v3, v2v4, v3v4} ∪ {v1vx, v2vx, v3vx, v4vx} .

v1 v2

v3 v4

v2

v3 v4
G

Ĝ

v1

vx

Figure 4.1: Graph G and the vertex-join Ĝ.

4.3 Properties

In this section, we now state and prove some basic properties of the vertex-join of a

graph.

It is clear that in the construction of the vertex-join of a graph, we create new cycles,

in particular triangles. Thus, we can write the set of triangles of the vertex-join,

T (Ĝ), as T (Ĝ) = T (G) ∪ T ′(Ĝ), where T (G) is the set of triangles of the graph G

and T ′(Ĝ) is the set of triangles of Ĝ which are not in T (G). Thus T (Ĝ), can be

partitioned into two sets, T (G) and T ′(Ĝ).

Lemma 4.3.1. Let G be a graph of order n with vertex set V = {v1, v2, . . . , vn} and

edge set E = {vivj | for some i, j ∈ {1, . . . , n}}. Then each edge of G, vivj, will be

an edge of a new triangle in Ĝ which is not in G.
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Proof. Let vivj ∈ E(G). By Definition 4.2.1 of Ĝ, then vivx, vjvx ∈ E(Ĝ). Since

E(G) ⊆ E(Ĝ), this implies vivj ∈ E(Ĝ). Hence we have that {vivx, vjvx, vivj} ⊆

E(Ĝ) which is an edge set of a triangle by Definition 3.2.1. But this triangle is not

in G since vertex vx /∈ V (Ĝ).

Proposition 4.3.2. Let G be a graph of order n and size m. Let T ′(Ĝ) be the set of

triangles in Ĝ but not in G. Then |T ′(Ĝ)| = m.

Proof. Let Ĝ be the vertex-join of the graph G, V ′(Ĝ) = V (Ĝ)− V (G) and E ′(Ĝ) =

E(Ĝ)− E(G). Thus by Definition 4.2.1, E ′(Ĝ) = {v1vx, v2vx, . . . , vnvx} and E(G) =

{vivj | i, j ̸= x and for some i, j ∈ {1, . . . , n} }. By Definition 3.2.1, a triangle is a

three element edge set {vivj, vivk, vjvk} on a three vertex set {vi, vj, vk}. Hence there

are three cases of elements of T ′(Ĝ):

Case 1. We first look at the case where we have three element edge set where two

edges are in E(G) and one edge in E ′(Ĝ). Say vivj, vlvk ∈ E(G) and vpvx ∈ E ′(Ĝ).

If vivj = vlvk, we have parallel edges so it is not a simple graph. So we consider

vivj ̸= vlvk, however we already have 3 distinct vertices as endpoints, so adding vp, vx

will add another vertex vx as an endpoint and vp does not matter in this case. This

contradicts the definition of a triangle, since we have at least four element vertex set.

Case 2. Secondly we consider the case were we have three element edge set where

all three edges are in E ′(Ĝ). Say {vivx, vjvx, vkvx} where i ̸= j ̸= k. This is a contra-

diction since we have a four element vertex set.

Case 3. Lastly we consider three element edge set where one edge is in E(G) and

two edges in E ′(Ĝ), say we have {vivj, vlvx, vkvx}. If {i, j} ̸= {l, k}, there is a con-

tradiction, we have four vertices. But if {i, j} = {l, k} we have {vivj, vivx, vjvx} on

three vertex set {vi, vj, vx} thus giving a triangle.

Hence since there arem edges of the form vivj, the result follows that |T ′(Ĝ)| = m.

Corollary 4.3.3. Let G be a graph of size m and Ĝ its vertex-join. Then each

element of T ′(Ĝ) will have vertex vx.
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Corollary 4.3.4. Let G be a graph of size m and Ĝ the vertex-join of G. Let T (G)

be the set of triangles of G. Then |T∆(G)| = |T (G)|+m .

Proposition 4.3.5. Let G be a graph of size m and Ĝ the vertex-join of G. Then

the triangle graph of Ĝ, T∆(Ĝ) has a subgraph isomorphic to a complete graph Km−1

Proof. Let T ′(Ĝ) be the set of triangles of Ĝ which are not in G. By Proposition 4.3.2,

|T ′(Ĝ)| = m. By Corollary 4.3.3, each element of T ′(Ĝ) has vertex vx. Hence by

construction of T∆(Ĝ), each vertex of T∆(Ĝ) which is in T ′(Ĝ) will be connected to

the other m− 1 vertices.

4.4 Examples of Classes

In this section, we redefine some classes of graphs which are vertex-joins of other

classes of graphs. In particular, we discuss the classes already discussed in Chap-

ter 3. Thereafter, we verify our propositions in Chapter 3 by applying our results in

Section 4.3.

We start by giving an alternative definition of a wheel graph as a vertex-join of another

graph.

Definition 4.4.1. Let G be a cycle graph Cn−1. We define a wheel graph of order

n, Wn to be the vertex-join of Cn−1.

We now verify one of the properties of Proposition 3.3.1 in Chapter 3 for wheel graphs.

In Proposition 4.3.2, G is equal to Cn−1 with m = n− 1 and Ĝ is Wn. Cn−1 does not

have any triangles. Hence, Wn has m = n − 1 more triangles than Cn−1. Verifying

Proposition 3.3.1, that Wn has n− 1 triangles.

Example 4.4.2. The graph in Figure 4.2 illustrates a cycle graph C5 and the vertex-

join Ĉ5. We note that Ĉ5 is equal to a wheel graph W5.

54



C5

Ĉ5 = W6

vx

Figure 4.2: Graph C5 and vertex-join Ĉ5.

We now give an alternative definition of a fan graph as a vertex-join of another graph.

Definition 4.4.3. Let G be a path graph Pn−1. We define a fan graph, fn to be the

vertex-join of Pn−1.

We now verify one of the properties of Proposition 3.3.18 in Chapter 3 for a fan graph.

In Proposition 4.3.2, G is a fan and is equal to Pn−1 with m = n−1 and Ĝ. Pn−1 does

not have any triangles. Hence fn has m = n − 1 more triangles than Pn−1 verifying

Proposition 3.3.18 that fn has n− 1 triangles.
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Example 4.4.4. The graph G given in Figure 4.3 is a path graph P4 and the vertex-

join of P4.

P4

P̂4 = f4

vx

Figure 4.3: Graph P4 and vertex-join P̂4.

4.5 Conclusion

In this chapter, we discussed the concept of the vertex-join of a graph. In Section 4.3,

we stated and proved some properties of the triangle graph of a vertex-join. We

concluded the chapter by giving alternative definitions of wheel graphs and fan graphs

as vertex joins. We verified some of the properties stated in Chapter 3 for wheel graphs

and fan graphs.
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Chapter 5

Conclusion

In this dissertation, we set out to study derived graphs. We first looked at the

historical background of graphs and derived graphs. Then we discussed some basic

definitions and terms most commonly used in graph theory choosing the notations

to be followed where a term has different notations in the literature . Thereafter, we

looked at some classes of graphs which were useful in writing up this dissertation. We

discussed derived graphs that come from different kinds of graph operations. We then

discussed intersection graphs and chose only to discuss one type, interval graphs. We

finally mentioned chordal graphs which some authors classify them under intersection

graphs, but we chose to classify them under graph operations.

We noted that there are many graph operations but we chose to concentrate our study

on line graphs in Chapter 2. With line graphs, we studied some known properties for

certain classes of graphs mentioned in Chapter 1. Of much interest was the alternative

ways of finding the number of edges of the line graph of a certain class of graph.

In Chapter 3, we discussed the main structure of this dissertation, the triangle graph

of a graph. We established some notations which were used throughout from Chapter

3 to the end. Thereafter, we defined a graph operation called the triangle graph of a

graph. We clarified the difference between the triangle graph of a graph and the cycle

graph of a graph, where the cycle is of order 3. We then stated and proved a few
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properties of a triangle graph of a graph. Furthermore, we discussed triangle graphs

of certain classes of graphs, namely; wheel graphs, helm graphs, sun flower graphs

and friendship graphs.

Finally, in Chapter 4, we first discussed a well known graph operation called vertex-

join of a graph G. Thereafter, we gave some general properties of a triangle graph

of a vertex-join of a general graph. In addition, we gave alternative definitions of a

wheel graph and a fan graph as vertex-joins of some classes of graphs. We concluded

by verifying some properties from Chapter 3 for wheel graphs and fan graphs.

For further studies, one can address the following questions on triangle graph of a

graph.

1. When can a triangle graph of G be isomorphic to G?

2. Can you determine classes of graphs such that the triangle graph of G is bigger

in terms of size than the original graph G?

3. Is any graph G a triangle graph of some other graph?
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